90,113 research outputs found

    Universal measurement of quantum correlations of radiation

    Full text link
    A measurement technique is proposed which, in principle, allows one to observe the general space-time correlation properties of a quantized radiation field. Our method, called balanced homodyne correlation measurement, unifies the advantages of balanced homodyne detection with those of homodyne correlation measurements.Comment: 4 pages, 4 figures, small misprints were corrected, accepted to Phys. Rev. Let

    Anomalous diffusion in quantum Brownian motion with colored noise

    Get PDF
    Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading

    Scaling Studies Of Spheromak Formation And Equilibrium

    Get PDF
    Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment (SSX). Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is established in both small (d(small)=0.16 m) and large (d(large)=3d(small)=0.50 m) copper flux conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed solely by gun physics (in particular the ratio of gun current to flux, mu(0)I(gun)/Phi(gun)) and is independent of the flux conserver dimensions. It has also been verified that equilibrium is well described by the force free condition del xB=lambda B (lambda=constant), particularly early in decay. Departures from the force-free state are due to current profile effects described by a quadratic function lambda=lambda(psi). Force-free SSX spheromaks will be merged to study magnetic reconnection in simple magnetofluid structures. (C) 1998 American Institute of Physics

    Rapid optimization of multiple-burn rocket flights, 8 March 1968 - 8 March 1969

    Get PDF
    Iterative solution of boundary value problem for rapid optimization of multiple-burn rocket flight

    Nuclear Saturation with in-Medium Meson Exchange Interactions

    Full text link
    We show that the assumption of dropping meson masses together with conventional many-body effects, implemented in the relativistic Dirac-Brueckner formalism, explains nuclear saturation. We use a microscopic model for correlated 2π2\pi exchange and include the standard many-body effects on the in-medium pion propagation, which initially increase the attractive nucleon-nucleon (NNNN) potential with density. For the vector meson exchanges in both the ππ\pi\pi and NNNN sector, we assume Brown-Rho scaling which---in concert with `chiral' ππ\pi\pi contact interactions---reduces the attraction at higher densities.Comment: 5 pages REVTeX, 2 eps-figures included, submitted to Phys. Rev. Let

    The Microcanonical Functional Integral. I. The Gravitational Field

    Full text link
    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν\nu is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by {\it any} real stationary axisymmetric black hole, then in this same approximation lnν\ln\nu is shown to equal 1/4 the area of the black hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν\nu that lead to "imaginary time" functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function.Comment: 29 pages, plain Te

    ANOPP programmer's reference manual for the executive System

    Get PDF
    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers

    Non-existence of Skyrmion-Skyrmion and Skyrmion-anti-Skyrmion static equilibria

    Full text link
    We consider classical static Skyrmion-anti-Skyrmion and Skyrmion-Skyrmion configurations, symmetric with respect to a reflection plane, or symmetric up to a GG-parity transformation respectively. We show that the stress tensor component completely normal to the reflection plane, and hence its integral over the plane, is negative definite or positive definite respectively. Classical Skyrmions always repel classical Skyrmions and classical Skyrmions always attract classical anti-Skyrmions and thus no static equilibrium, whether stable or unstable, is possible in either case. No other symmetry assumption is made and so our results also apply to multi-Skyrmion configurations. Our results are consistent with existing analyses of Skyrmion forces at large separation, and with numerical results on Skymion-anti-Skyrmion configurations in the literature which admit a different reflection symmetry. They also hold for the massive Skyrme model. We also point out that reflection symmetric self-gravitating Skyrmions or black holes with Skyrmion hair cannot rest in symmetric equilibrium with self-gravitating anti-Skyrmions.Comment: v2 Typos corrected, refs added. v3 Journal versio

    Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions

    Full text link
    We present shell model calculations for the beta-decay of the 14C ground state to the 14N ground state, treating the states of the A=14 multiplet as two 0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN) interactions derived from the realistic Bonn-B potential and find that the Gamow-Teller matrix element is too large to describe the known lifetime. By using a modified version of this potential that incorporates the effects of Brown-Rho scaling medium modifications, we find that the GT matrix element vanishes for a nuclear density around 85% that of nuclear matter. We find that the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is improved using the medium-modified Bonn-B potential and that the transition strengths from excited states of 14C to the 14N ground state are compatible with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion
    corecore